A Novel Neutrosophic Weighted Extreme Learning Machine for Imbalanced Data Set

نویسندگان

  • Yaman Akbulut
  • Abdulkadir Sengür
  • Yanhui Guo
  • Florentin Smarandache
چکیده

Extreme learning machine (ELM) is known as a kind of single-hidden layer feedforward network (SLFN), and has obtained considerable attention within the machine learning community and achieved various real-world applications. It has advantages such as good generalization performance, fast learning speed, and low computational cost. However, the ELM might have problems in the classification of imbalanced data sets. In this paper, we present a novel weighted ELM scheme based on neutrosophic set theory, denoted as neutrosophic weighted extreme learning machine (NWELM), in which neutrosophic c-means (NCM) clustering algorithm is used for the approximation of the output weights of the ELM. We also investigate and compare NWELM with several weighted algorithms. The proposed method demonstrates advantages to compare with the previous studies on benchmarks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

Dynamic Cost-sensitive Ensemble Classification based on Extreme Learning Machine for Mining Imbalanced Massive Data Streams

In order to lower the classification cost and improve the performance of the classifier, this paper proposes the approach of the dynamic cost-sensitive ensemble classification based on extreme learning machine for imbalanced massive data streams (DCECIMDS). Firstly, this paper gives the method of concept drifts detection by extracting the attributive characters of imbalanced massive data stream...

متن کامل

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

Multiple attribute group decision making based on interval neutrosophic uncertain linguistic variables

To deal with decision-making problems with interval neutrosophic uncertain linguistic information, the paper proposes a multiple attribute group decision-making method under an interval neutrosophic uncertain linguistic environment. Firstly, the concept of an interval neutrosophic uncertain linguistic set and an interval neutrosophic uncertain linguistic variable (INULV) is presented by combini...

متن کامل

Neutrosophic Sets and Systems, Vol. 2, 2014

Similarity measures play an important role in data mining, pattern recognition, decision making, machine learning, image process etc. Then, single valued neutrosophic sets (SVNSs) can describe and handle the indeterminate and inconsistent information, which fuzzy sets and intuitionistic fuzzy sets cannot describe and deal with. Therefore, the paper proposes new similarity meas-ures between SVNS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Symmetry

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017